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A new theory for the turbulent plane wall jet without external stream is proposed
based on a similarity analysis of the governing equations. The asymptotic invariance
principle (AIP) is used to require that properly scaled profiles reduce to similarity
solutions of the inner and outer equations separately in the limit of infinite Reynolds
number. Application to the inner equations shows that the appropriate velocity scale
is the friction velocity, u∗, and the length scale is ν/u∗. For finite Reynolds numbers,
the profiles retain a dependence on the length-scale ratio, y+

1/2 = u∗y1/2/ν, where y1/2

is the distance from the wall at which the mean velocity has dropped to 1/2 its
maximum value. In the limit as y+

1/2 → ∞, the familiar law of the wall is obtained.

Application of the AIP to the outer equations shows the appropriate velocity scale to
be Um, the velocity maximum, and the length scale y1/2; but again the profiles retain a
dependence on y+

1/2 for finite values of it. The Reynolds shear stress in the outer layer

scales with u2∗, while the normal stresses scale with U2
m. Also Um ∼ yn1/2 where n < −1/2

and must be determined from the data. The theory cannot rule out the possibility that
the outer flow may retain a dependence on the source conditions, even asymptotically.

The fact that both these profiles describe the entire wall jet for finite values of
y+

1/2, but reduce to inner and outer profiles in the limit, is used to determine their

functional forms in the ‘overlap’ region which both retain. The result from near
asymptotics is that the velocity profiles in the overlap region must be power laws, but
with parameters which depend on Reynolds number y+

1/2 and are only asymptotically

constant. The theoretical friction law is also a power law depending on the velocity
parameters. As a consequence, the asymptotic plane wall jet cannot grow linearly,
although the difference from linear growth is small.

It is hypothesized that the inner part of the wall jet and the inner part of the
zero-pressure-gradient boundary layer are the same. It follows immediately that all of
the wall jet and boundary layer parameters should be the same, except for two in the
outer flow which can differ only by a constant scale factor. The theory is shown to be
in excellent agreement with the experimental data which show that source conditions
may determine uniquely the asymptotic state achieved. Surprisingly, only a single
parameter, B1 = (Umν/Mo)/(y1/2Mo/ν

2)n = constant where n ≈ −0.528, appears to
be required to determine the entire flow for a given source.

† Present address: Chalmers University of Technology, 5–412 96 Göteborg, Sweden.



368 W. K. George and others

CONTENTS

1. Introduction 368
2. Governing equations and boundary conditions 370
3. The asymptotic invariance principle (AIP) 372
4. Full similarity of the inner equations 372
5. Full similarity of the outer equations 375
6. Experimental verification of the outer flow analysis 378
7. Scaling of the other turbulence quantities 383
8. The overlap layer 386
9. The inertial and mesolayer subregions 389

10. Wall jet versus boundary layer: a common inner region? 391
11. A mesolayer interpretation of a+ 393
12. Composite velocity profiles for the inner and overlap regions 393
13. The asymptotic friction law 394
14. Implications for y1/2 and Um versus x 395
15. Implications of the continuity equation 401
16. Summary and conclusions 404
Appendix A. Details of the overlap analysis 404
Appendix B. The Reynolds stress in the overlap layer 408
Appendix C. The effect of Reynolds number on the overlap range 408

1. Introduction
Turbulent wall jets have long been a favourite of experimenters and modellers,

because of both their simple boundary conditions and their close resemblance to
many flows of engineering importance. Such flows include applications in film cooling,
ventilation, and separation control over wings, to cite but a few examples. An
abundance of papers have been written about wall jets, and numerous review articles.
The ones particularly of note with regard to this paper are by Launder & Rodi (1981,
1983) which provide excellent summaries of the state of knowledge to the early 1980s.
Wygnanski, Katz & Horev (1992) (hereafter referred to as WKH) and Abrahamsson,
Johansson & Löfdahl (1994) (hereafter referred to as AJL) both extend the reviews
to the present, and provide more experimental data.

The flow under consideration is the plane wall jet with no externally imposed flow
(figure 1). It is simulated in the laboratory by a jet of fluid from a high-aspect-ratio
slot at the wall exhausting into a large chamber. In the ideal plane wall jet the flow
is of infinite extent in the transverse (z) direction, and unconstrained in either the
streamwise (x) or cross-stream (y) directions.

There has long been the suspicion that there should exist a similarity solution of
some type for the plane wall jet; however, attempts to identify the solution have not
been totally successful. Irwin (1973) tried to apply the single length and velocity scale
methods presented in most text books, and had some success in scaling the outer
mean velocity with the velocity maximum, Um, and the velocity half-width, y1/2. The
scaling was less successful for the Reynolds stress, and no statement at all could be
made about how the outer flow was coupled to the inner flow or what the friction law
was, other than empirically. WKH were particularly critical of the use of the familiar
law of the wall and log profiles from boundary layer theory for the near-wall region.

It might be asked: Who cares whether similarity solutions to the governing equa-
tions exist or not, since the wall jet flows of industrial interest do not satisfy these
simple boundary conditions? The answer is the same as for any turbulent flow under
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Figure 1. Schematic of the plane wall jet.

consideration. Only a similarity solution provides an unambiguous test of a turbu-
lence model independent of computational constraints and experimental difficulties.
It does not depend on computational grid, domain, or differencing schemes, nor
does it depend on difficulties in realizing and measuring a laboratory flow. It exists
independent of closure approximations, and thus the scaling laws it offers can be
used to test closure hypotheses. Its straightforward boundary conditions are free from
the finite limits of experimental facilities or computer memories, and thus its profiles
provide an ideal reference for testing the effects of enclosure.

There have been four recent developments which make reconsideration of wall
jet similarity theory timely. First, George (1989) showed that the single length and
velocity scale approach to the similarity of free shear flows was almost never correct
since it over-constrained the equations, and he proposed the more general approach
which will be applied here. Second, George (1995), suggested an asymptotic invari-
ance principle which not only could be applied to free shear flows, but allowed the
inner and outer portions of boundary layer flows to be considered separately, then
matched at finite Reynolds numbers. Third, George & Castillo (1997) successfully
applied this approach to the zero-pressure-gradient boundary layer and correlated the
results with boundary layer data. And fourth, Karlsson, Eriksson & Persson (1993a, b)
(hereafter referred to as KEP) and Eriksson, Karlsson & Persson (1998) (hereafter
referred to as EKP) have provided velocity measurements which resolve both the
high-turbulence-intensity outer flow and the wall region down to y+ = 1 using LDA.
The latter provide, for the first time, direct determination of the wall shear stress
without reference to the theories being tested.

This paper reconsiders the question of whether the plane wall jet should admit
similarity solutions at all. The new theory proposed will be tested against wall jet
experiments, and compared step-by-step with the corresponding theory for the zero-
pressure-gradient boundary layer by George & Castillo (1997), hereafter referred to as
GC. Experiments receiving particular attention will be those of KEP/EKP and AJL.
The KEP/EKP experiments were carried out in a water tank at Vattenfall Utveckling
AB using two-component burst-mode LDA with statistically uniform seeding. The
AJL experiment used hot wires in an air facility at Chalmers.† Both experiments were
carefully coordinated and achieved very similar inlet conditions.

† The KEP/EKP data are believed to be more accurate than the AJL data because of well-known
hot-wire errors close to walls, and also in the high-intensity outer turbulent flow where local
instantaneous flow reversal can occur. The hot-wire data, on the other hand, have less scatter than
the LDA data, making it easier to sort out trends, especially in the second-moment data.
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2. Governing equations and boundary conditions
The equation of motion and boundary conditions appropriate to a plane wall jet

with constant properties at high Reynolds number are given by (Irwin 1973)

U
∂U

∂x
+ V

∂U

∂y
=

∂

∂y

[
〈−uv〉+ ν

∂U

∂y

]
−
{
∂

∂x

[〈u2〉 − 〈v2〉]} (2.1)

where U → 0 as y → ∞ and U = 0 at y = 0. This equation has been obtained
by integrating the y-momentum equation across the boundary layer to eliminate the
pressure. It is the same equation that governs both the plane free jet and the turbulent
boundary layer at zero pressure gradient; only the boundary conditions are different.

Equation (2.1) can be integrated across the flow to yield the momentum integral
equation given to second order by

d

dx

∫ ∞
0

[U2 + 〈u2〉 − 〈v2〉]dy = −τw
ρ
≡ −u2

∗ (2.2)

where τw is the wall shear stress and u∗ is the friction velocity. If the flow indeed
evolves free from other influences, equation (2.2) can be integrated from the source
to yield ∫ ∞

0

[U2 + 〈u2〉 − 〈v2〉]dy = Mo −
∫ x

0

τw

ρ
dx′ (2.3)

where ρMo is the rate at which momentum is added per unit length at the source.
Thus unlike the plane free jet where the momentum integral is constant, for the plane
wall jet there is a slow but continuous loss of momentum to the wall. And unlike the
boundary layer, the supply of momentum driving the flow is finite.

The presence of the no-slip condition precludes the possibility of similarity solutions
for the entire flow. The normal stresses in equation (2.1) are negligible to second order,
and can be omitted for now with no loss of generality (in § 7 it will be shown from
the Reynolds stress equations that they also scale in similarity variables). Therefore
solutions are sought which asymptotically (at infinite Reynolds number) satisfy the
following outer and inner equations and boundary conditions:

outer region

U
∂U

∂x
+ V

∂U

∂y
=

∂

∂y

[〈−uv〉] (2.4)

where U → 0 as y →∞;
inner (or near wall) region

0 =
∂

∂y

[
〈−uv〉+ ν

∂U

∂y

]
(2.5)

where U = 0 at y = 0. The neglected terms in both inner and outer equations
vanish identically only at infinite Reynolds number. However, there is nothing in the
development of these equations which precludes their approximate validity from the
time the flow undergoes transition.

Just as for the turbulent boundary layer, equation (2.5) for the inner region can be
integrated to obtain

〈−uv〉+ ν
∂U

∂y
=
τw

ρ
≡ u2

∗ (2.6)
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Figure 2. Schematic showing inner and outer regions together with subregions.
(Here δ+ ∝ y+

1/2 = y1/2u∗/ν.)

where τw is the wall shear stress and u∗ is the corresponding friction velocity defined
from it. It is clear that in the limit of infinite Reynolds number (but only in this
limit) the total stress is constant across the inner layer, and hence its name ‘constant
stress layer’. The appearance of u∗ in equation (2.6) does not imply that the wall
shear stress is an independent parameter (like ν or Mo). It enters the problem only
because it measures the forcing of the inner flow by the outer; or alternatively, it can
be viewed as measuring the retarding effect of the inner flow on the outer. Thus u∗ is
a dependent parameter which must be determined by matching solutions of the inner
and outer equations.

The inner and outer regions of the flow are illustrated schematically in figure 2,
which also shows the subregions which will be identified later. As noted above, the
inner layer occurs only because of the necessity of including viscosity in the problem
so that the no-slip condition can be met. The outer layer, on the other hand, is
dominated by inertia and the effects of viscosity enter primarily through the matching
to the inner layer. Thus the outer flow is effectively governed by inviscid equations,
but with viscous-dominated inner boundary conditions set by the inner layer.
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3. The asymptotic invariance principle (AIP)
The traditional approach to the equations for the plane wall jet has been to ignore

the presence of the wall and its effect on most of the flow, and to analyse the outer
flow as a single length and velocity scale flow (Irwin 1973; Townsend 1976). George
(1989) has pointed out that this method is too restrictive for even turbulent free
shear flows since the Reynolds stresses should be allowed to have their own scales.
GC extended this type of analysis to the zero-pressure-gradient turbulent boundary
layer by considering the inner and outer equations separately. These equations ((2.4)
and (2.5)), and therefore their similarity solutions, are exactly valid only in the limit
of infinite Reynolds number. Seen another way, in the equations terms which are
Reynolds number dependent are neglected, but these terms are truly gone only in the
infinite Reynolds number limit. Therefore solutions to the full equations (as opposed
to the inner and outer equations) must likewise be Reynolds number dependent and
lose this dependence only at infinite Reynolds number. This idea was referred to as
the asymptotic invariance principle by George (1995).

The asymptotic invariance principle (although not called by this name) has always
been applied to free turbulent shear flows. Similarity solutions for those flows (when
they exist) are infinite Reynolds number solutions because the equations from which
they are derived are strictly valid only at infinite Reynolds number (George 1989;
Tennekes & Lumley 1972). The difference in application here is that for the wall jet
(like the boundary layer) there will be two sets of solutions – one which reduces to a
full similarity solution of the outer equations at infinite Reynolds number, and another
which reduces to a full similarity solution of the inner equations in the same limit. For
finite Reynolds numbers, the Reynolds number dependence of the equations themselves,
however weak, dictates that the solutions cannot be similarity solutions anywhere. But,
as noted above, this is no different than for free shear flows which only asymptotically
show Reynolds number independence.

In the following sections, the asymptotic invariance principle will be applied to
some of the single-point equations governing the plane wall jet. Solutions will be
sought which reduce to full similarity solutions of the equations in the limit of infinite
Reynolds number, first for the inner equations and then for the outer. The form
of these solutions will determine the appropriate scaling laws for finite as well as
infinite Reynolds number, since alternative scaling laws could not be independent of
Reynolds number in the limit. Once the method has been established by application
to the equations governing the mean momentum, the same principle will be applied
to equations governing the Reynolds stress equations and the statistical quantities
appearing in them.

4. Full similarity of the inner equations
In keeping with the AIP set forth above, Similarity solutions to the infinite Reynolds

number inner equations and boundary conditions are sought which are of the form

U = Usi(x)fi∞(y+), (4.1)

〈−uv〉 = Rsi(x)ri∞(y+), (4.2)

where y+ ≡ y/η and the length scale η = η(x) remains to be determined. The
subscript i∞ is used to distinguish these solutions to the limiting inner equation from
the profiles for the entire flow (scaled with the same variables) that are introduced
below.
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Substitution into equation (2.6) and clearing terms yields[
u2∗
U2
si

]
=

[
Rsi

U2
si

]
ri∞ +

[
ν

ηUsi

]
f′i∞. (4.3)

All of the x-dependence is in the bracketed terms, therefore similarity is possible
only if all of these have the same x-dependence, i.e.[

u2∗
U2
si

]
∼
[
Rsi

U2
si

]
∼
[
ν

ηUsi

]
. (4.4)

Here the symbol ∼ is defined to mean ‘has the same x-dependence as’.
Since three parameters are to be determined, and equation (4.4) gives only two

independent conditions, one can be chosen arbitrarily. A convenient choice for η is

η = ν/Usi. (4.5)

Then the inner velocity scale must be the friction velocity so that

Usi ≡ u∗. (4.6)

It follows that

η = ν/u∗, (4.7)

Rsi = u2
∗. (4.8)

Substitution into equation (4.3) yields the limiting inner momentum equation as

1 = ri∞ + f′i∞. (4.9)

The similarity variables derived above are the usual choices for the inner layer of
a turbulent boundary layer, and have previously been used as scaling parameters for
the wall jet by most investigators. For finite Reynolds number, however, the solutions
for mean velocity and Reynolds stress will retain a Reynolds number dependence,
no matter how they are scaled, since the Reynolds-averaged Navier–Stokes equations
themselves do. It will be convenient later to represent this dependence symbolically
by

u+ ≡ U

u∗
= fi(y

+, δ+), (4.10)

〈−uv〉
u2∗

= ri(y
+, δ+), (4.11)

where δ+ = δ/η = u∗δ/ν is a Reynolds number to be defined later. Note that the
evolution of the profiles with x which is not removed by the scaling parameters is
accounted for by the dependence on δ+ since δ = δ(x) only. In the limit of infinite
Reynolds number equations (4.10) and (4.11) reduce to similarity solutions of the
inner equations. For finite Reynolds number they are simply a family of scaled
profiles for the entire flow characterized by the parameter δ+ (or y+

1/2), like those

shown in the plots below.
Figure 3 shows the mean velocity profile from the KEP data scaled in inner

variables. These data collapse reasonably for y+ less than 100 to 200 approximately,
depending on distance downstream (or the Reynolds number). KEP and EKP have
noted that the linear region next to the wall only extends to y+ ≈ 3. Outside this,
the Reynolds shear stress begins to be important in the momentum balance until by
y+ ≈ 30 it dominates the viscous stress completely. This region where the Reynolds
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Figure 3. The mean velocity profile in inner scaling: KEP data at 40x/b, 70x/b and 100x/b.
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Figure 4. The streamwise normal Reynolds stress in inner scaling: KEP data at 40x/b, 70x/b
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shear stress and viscous stress are both important will be referred to as the buffer
region. Figure 2 shows both the linear and buffer layers to comprise the viscous
sublayer, so named since viscous stresses play a significant role in the single-point
equations. Most importantly, convection effects by the mean velocity are negligible as
long as y+

m = ymu∗/ν � 30.
Note that application of the AIP to the Reynolds stress equations near the wall

shows that u∗ and ν are the appropriate quantities for scaling all the single-point
quantities. From figure 4 it is obvious that the inner scaling fails completely for
〈u2〉 outside y+ ≈ 7. Interestingly, this is the outer extent to which the fourth-order

expansion of u+ at the wall (i.e. u+ = y+ + c4y
+4

) can adequately describe the mean
velocity, cf. EKP and § 12. Both 〈−uv〉 and 〈v2〉 show similar tendencies as shown
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Figure 5. The cross-stream normal and shear Reynolds stress in inner scaling: KEP data at 40x/b,
70x/b and 100x/b.

in figure 5, but the curves do not separate as dramatically, perhaps because of the
kinematic condition on v at the wall. These results are consistent with the conclusions
of GC and Gad-el-Hak & Bandyopadhyay (1994) for the zero-pressure-gradient
turbulent boundary layer.

5. Full similarity of the outer equations
In accordance with the asymptotic invariance principle, solutions to the outer

momentum equation and boundary conditions are sought which reduce to similarity
solutions of these equations in the limit of infinite Reynolds number:

U = Usofo∞(ȳ), (5.1)

−〈uv〉 = Rsoro∞(ȳ), (5.2)

where ȳ = y/δ and Uso, Rso, and δ are functions of x only. It is important to note
that, unlike in the previous analysis of Irwin (1973), no scaling laws are assumed at
the outset, but will be derived from the conditions for similarity of the governing
equations. In particular, it is not assumed that Rso = U2

so. As before, the subscript o∞
is used to distinguish these infinite Reynolds number solutions from the Reynolds-
number-dependent profiles scaled in outer variables which will be used later. The
velocity could have been written as a deficit using some reference velocity in the outer
layer to avoid the necessity of accounting for its variation across the inner layer;
however the results can be shown to be the same.

Substitution into equation (2.4) and clearing terms yields[
δ

Uso

dUso

dx

]
f2
o∞ −

([
dδ

dx

]
+

[
δ

Uso

dUso

dx

])
f′o∞

∫ ȳ

0

fo∞(ξ)dξ =

[
Rso

U2
so

]
r′o∞. (5.3)

The V -component of velocity has been eliminated by integrating the continuity
equation from the wall, thus introducing a contribution from the inner layer which
vanishes identically at infinite Reynolds number. The only difference between this
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equation and the one utilized by Irwin (1973) is the factor of [Rso/U
2
so] on the

right-hand side, but it will be seen to be very important below.
For the type of equilibrium similarity solution suggested by George (1989, 1995)

to be possible, the bracketed terms must all have the same x-dependence. This is
possible only if

1

Uso

dUso

dx
∼ 1

δ

dδ

dx
(5.4)

and

Rso ∼ U2
so

dδ

dx
. (5.5)

Note that Irwin (1973) assumed at the outset that Rso = U2
m; this assumption is not

justified. The Reynolds stress scale is not U2
so, but an entirely different scale depending

also on the growth rate, dδ/dx. Thus the x-dependence of Rso is the same as U2
so

only if the wall jet can be shown to grow linearly. It will be shown below that linear
growth is not possible. It can also be shown (see Appendix B) that the inner and
outer Reynolds shear stress can match (to first order) only if

Rso ∼ U2
so

dδ

dx
∼ u2

∗. (5.6)

The need for such a matching is intuitively obvious, since the only non-zero boundary
condition on the Reynolds stress in the outer flow is that imposed by the inner.
Thus the outer flow is governed by two velocity scales. The similarity constraint of
equation (5.4) is satisfied if Uso is a power of δ, i.e.

Uso ∼ δn, (5.7)

where the coefficient and the exponent n remain to be determined, but can at most
be a function of the source conditions. This is a specific prediction which is easy to
test from experiment, but it does not seem to have been noticed previously. Note that
equation (5.4) also implies that if the velocity scale varies as a power of distance, x,
then δ must also vary as a power of x. But, contrary to popular assumption, there is
no reason to believe a priori that either is true, nor will they be found to be except
possibly asymptotically.

It is important to note that there is nothing in the equations to suggest that the
bracketed terms of equation (5.3) must be the same for all flows. In other words,
while all of the bracketed terms must have the same x-dependence and their ratios
must be constant, in principle at least, the constants may vary from flow to flow.
Thus, contrary to conventional wisdom, the equations themselves cannot rule out the
possibility of an asymptotic dependence on the source (or initial) conditions.

An interesting feature of the mean velocity and Reynolds stress profiles can be seen
by rewriting equation (5.3) using the similarity conditions as

nf2
o∞ − (1 + n)f′o∞

∫ ȳ

0

fo∞(ξ)dξ =

[
Rso

U2
sodδ/dx

]
r′o∞ (5.8)

The bracketed term on the right-hand side can be incorporated as a simple scale
factor into the function ro∞ by defining

r̃o∞ ≡
[

Rso

U2
sodδ/dx

]
ro∞. (5.9)



Similarity theory for the turbulent plane wall jet 377

Equation (5.8) then reduces further to

nf2
o∞ − (1 + n)f′o∞

∫ ȳ

0

fo∞(ξ)dξ = r̃′o∞ (5.10)

The implications of this are striking:
(i) If the value of n is universal, then properly scaled mean velocity and Reynolds

stress profiles from different wall jets must be exactly the same even if the x-
dependence of dδ/dx is itself dependent on the initial conditions. Conversely, collapse
of the profiles from different experiments means that n is universal, even if the other
ratios depend on initial conditions.

(ii) In view of (i), the collapse of the properly scaled mean velocity and Reynolds
shear stress profiles from different experiments cannot be taken to imply that the
wall jet is asymptotically independent of its initial (or upstream) conditions. Such
independence must be established from the other parameters, if it exists at all.

It should be noted that similar statements are not true, in general, for the other
second-order and higher-moment profiles for which a simple scale change cannot
make the profiles independent of source conditions. Thus the outer wall jet shares
this characteristic with free shear flows (cf. George 1989). The data considered below
will show that the exponent n appears to be universal; yet the asymptotic wall jet
may still be dependent on its source conditions.

Since the only boundary conditions on U are homogeneous, the scale velocity Uso

can be chosen as the maximum velocity, Um with no loss of generality. Similarly,
the outer length scale δ can be identified with any convenient location in the outer
flow; hence it can hereafter be assumed with no loss of generality to be the familiar
half-width denoted as y1/2.† The extension of the AIP to the Reynolds stress equations
in § 7 shows that some of the turbulence moments scale with Um, some with u∗, and
some with both. The normal stresses, 〈u2〉, 〈v2〉, and 〈w2〉 scale as U2

m; hence they are
quite different from the Reynolds shear stress.

According to the AIP, the similarity scaling derived above is appropriate for finite
Reynolds numbers as well, since only it can be invariant in the limit of infinite
Reynolds number. Thus the velocity and Reynolds stress profiles in outer variables
are

U

Um

= fo(ȳ, y
+
1/2) (5.11)

and

〈−uv〉
u2∗

= ro(ȳ, y
+
1/2), (5.12)

where δ+ ≡ y+
1/2 is the local Reynolds number. The profiles scaled in this manner,

unlike their infinite Reynolds number limits, are valid for all y until the limit is taken.
However, the scaled data can never collapse perfectly except in the limit, nor can they
be made to collapse with any other Reynolds-number-independent scaling. Obviously
fo and ro converge to fo∞ and ro∞, respectively, in the limit, and lose in the process
their ability to describe the inner flow.

† Alternatively the outer length scale could have been identified with the position of the velocity
maximum, say ym, since it also occurs in the outer flow, at least if the Reynolds number is high
enough. This choice has the disadvantage that it is difficult to determine the precise location of the
maximum experimentally because of the slow variation of the velocity around it, quite unlike y1/2

where the velocity is changing rapidly.
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Figure 6. The mean velocity profile in outer scaling: AJL data at different inlet Reynolds numbers
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6. Experimental verification of the outer flow analysis
Figure 6 shows the mean velocity data of AJL normalized by Um and y1/2 from

x/b = 70 to 150 for three different source Reynolds numbers. Figure 7 shows mean
velocity profiles from a number of investigators. Except for the extreme outer edge
of the flow (beyond y/y1/2 > 1.3 or so) where external flows, counter-flows, and
measurement errors dominate, all the normalized mean velocity profiles are virtually
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Figure 8. The streamwise normal Reynolds stress in outer scaling: AJL data at 70x/b, 100x/b
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0.005

0 1.0

y/y1/2

0
70x/b

100x/b

150x/b

0
0.5 1.5 2.0

2

5

70x/b

100x/b

150x/b

vv
U2

m

0.010

0.015

0.020

vv
u2

*

1

3

4

Figure 9. The cross-stream normal Reynolds stress in outer scaling: AJL data at 70x/b, 100x/b
and 150x/b.

identical. This collapse has been observed by many before (e.g. AJL or see the review
by Launder & Rodi 1981). The virtually identical profiles do imply that the exponent
n in the similarity relation of equation (5.7) is universal. This will be corroborated
below using y1/2 and Um. However, as noted above, they do not imply that the flow
is independent of source conditions.

Figures 8, 9 and 10 show the Reynolds stresses of AJL normalized both by U2
m,

y1/2 and by u2∗, y1/2. While the normal stresses collapse well in the outer flow with
U2
m, the Reynolds shear stress does not. On the other hand, the Reynolds shear stress

collapses well with u2∗, while the normal stresses do not. Thus both the mean velocity
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Figure 10. The Reynolds shear stress in outer scaling: AJL data at 70x/b, 100x/b and 150x/b.

and second moments are in striking agreement with the theory presented here. The
differences are not as obvious for the LDA data of KEP for which there is not as much
variation of u∗/Um, perhaps due to the presence of the recirculation at the largest
x/b values as noted by the authors. Both AJL and EKP show comparisons with
several earlier experiments for all the second-order moments, and there are significant
differences, both in profile shape and magnitude. While the latter may indeed represent
a sensitivity to upstream conditions, the profile variations suggest that the differences
may also be due to the well-known measurement problems with hot wires in such
high-intensity flows and the manner in which the wires were employed. A definitive
statement on this must await more extensive measurements with the more reliable
LDA techniques (as in KEP).

Figure 11 shows a log-log plot of Um/Uo versus y1/2/b for the data of KEP, AJL
and WKH where Uo is the exit velocity at x = 0 and b is the width of the source.
There is no theoretical justification for this normalization in spite of its widespread
use; it does, however, collapse the data to within about 10%. All the data are in
excellent agreement with the similarity requirement of a power law relation between
Um and y1/2, i.e.

Um

Uo

= Bo

[y1/2

b

]n
. (6.1)

The line shown has slope n = −0.528 and Bo = 1.09, where the former was obtained
from the momentum balance of the KEP data for 40 6 x/b 6 150 (discussed in
detail in § 14). The best fit slope, n, is nearly the same for all the curves, consistent
with the apparently universal velocity profile noted above. The best fit values of Bo
(assuming n = −0.528) are 1.10, 1.12, and 1.18 for the AJL data at source Reynolds
numbers of 10 000, 15 000, and 20 000 respectively. Note that EKP have argued that
their data should not all be treated equally because for small values of x/b the flow
is still developing, while for x/b > 100 the flow is adversely influenced by the return
flow in their facility. This will be discussed in §§ 14 and 15, and accounts for the slight
deviation of the data from the momentum conservation value for large values of x/b.
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Some, but not all, of the dependence on source conditions can be eliminated by
following Narasimha et al. (1973) (see also WKH) who suggested normalization by
Mo and ν where Mo is the rate at which momentum per unit mass per unit length
is added at the source, since these would be the only parameters available for a line
source of momentum. The same reasoning applied here (but without the additional
assumption of a power law in x) yields a non-dimensionalized similarity condition as

νUm

Mo

= B1Y
n

1/2, (6.2)

where Y1/2 is defined as Y1/2 ≡ y1/2Mo/ν
2. Note that this normalization does not affect

the exponent of the power law relationship between Um and y1/2, since it is already
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dimensionless. Moreover, unlike power laws in x where the origin is arbitrarily chosen,
there can be no virtual origin for y1/2 since it evolves together with Um.

It is important to recognize that while the scaling given by equation (6.2) is certainly
the appropriate scaling for a line source of momentum, it should not be expected to
collapse the data if finite source effects (like the exit profile or exit Reynolds number)
are important. As noted earlier, there is nothing in the equations themselves to suggest
that these finite source conditions are not important, and indeed the data appear to
reflect that.

Figure 12 shows a log-log plot of the momentum–viscosity-normalized data from
KEP, AJL and WKH. The line represents equation (6.2) using B1 = 1.85 and
n = −0.528, both determined from the momentum balance of the KEP data alone,
again using only data for 40 6 x/b 6 150. The best fit values for B1 (assuming
n = −0.528) are 1.87, 1.87 and 2.06 for the AJL 10 000, 15 000, and 20 000 data
respectively. The corresponding values are 1.79 and 1.84 for the WKH data at source
Reynolds numbers of 10 000 and 19 000 (the only WKH runs for which there was no
imposed external stream). Note that the values inferred from the WKH data would
be a percent or two higher if the momentum had been based on the actual exit profile
instead of the top-hat inferred values. Also all of the hot-wire values of B1 may
already be about 8% too high because of the hot-wire errors in the determination
of Um and y1/2 (about 2% and 12% respectively using the EKP results). Therefore
it is impossible to tell whether these curves should indeed collapse, or whether each
contains a unique dependence on its source. If the latter, the effect is not large, but
(as will be seen later) still causes a noticeable variation in the rate at which the wall
jet boundary layer grows.

As expected, the coefficient B1 in the momentum/viscosity scaling shows a some-
what weaker source dependence than Bo using the source parameters b and Uo.
Whether or not all of the sets of data are unique, it is obvious that they all individu-
ally satisfy the proper similarity power law relation between Um and y1/2. Moreover,
even though the coefficient B1 may show a slight dependence on the particular source
and experiment, the value of n appears to be nearly (if not exactly) the same for all
experiments.

In fact, B1 should at least be exactly the same for a family of similar sources (i.e.
same exit profile, Reynolds number, etc.) For a top-hat source B1 and Bo are related
by

Bo = B1

(
Uob

ν

)(1+2n)

= B1R
(1+2n)
o (6.3)

since Mo = U2
ob. All the experiments considered had approximately top-hat sources,

which may explain why there is not a greater difference between figures 11 and 12.
All of the estimates for n from the individual data sets are within a few percent of

each other. It will be argued later using the similarity form of the momentum integral,
equation (14.5), that n = −1/2 must represent a limiting value, so for finite Reynolds
numbers at least, −n > 1/2. Since n is close to −1/2 and enters the momentum
balance as (1 + 2n), the momentum balance is very sensitive to very small errors in n;
hence the value of determining n from the momentum balance. The actual estimates
for the individual downstream locations of the KEP data vary from n = −0.526 to
n = −0.536, depending on how dy1/2/dx is estimated. The latter value is exactly the
value obtained if the Mox/ν

2-dependence of the power law curve fits of WKH for
νUm/Mo and Moy1/2/ν

2 is eliminated to obtain equation (6.2), although the value of
B1 so obtained is lower by about 25%. Whether this variation represents a source
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Reynolds number dependence, or is just an artifact of the method of analysis will
require further investigation. Regardless of its precise value, the concurrent collapse
of the normalized velocity profiles from all experiments suggests that the value of n
may be universal, as noted above.

In summary, the collapse of the profiles as suggested by the theory (especially the
Reynolds shear stress), the success of the similarity relation between Um ∼ yn1/2, and

even the differences among different experiments provide strong experimental support
for the proposed outer scaling. The latter point is especially important in view of the
increasing number of flows which appear to retain asymptotically a dependence on
initial conditions. Although GC suggested the possibility of such a dependence for
the outer part of the zero-pressure-gradient boundary layer, the data were insufficient
to make a judgement (although there were clues). There are, however, numerous
examples of homogeneous and free shear flows which do appear to behave in this
manner, e.g. isotropic decay (George 1992), homogeneous shear flow (George &
Gibson 1992), plane wake (Wygnanski, Champagne & Marasli 1986), time-dependent
wake (Moser, Rogers & Ewing 1998). But the wall jet appears to be the first wall-
bounded flow for which it can be substantiated that initial conditions may matter, at
least to the outer flow. And if the initial conditions matter, as will be seen in § 14,
they can have an effect on the asymptotic spreading rate.

7. Scaling of the other turbulence quantities

For the inner layer, there is only one velocity scale, u∗, which enters the single-point
equations; therefore all single-point statistical quantities must scale with it. This is,
of course, the conventional wisdom, but with an important difference: the inner layer
ends about y+ ≈ 7, not far from where the velocity profile ceases to be linear (y+ ≈ 3)!
This is contrary to the usual practice to include the overlap layer as part of the wall
layer. As shown before, the dependent variables in the overlap layer are expected to
be functions of both inner and outer scales, and thus Reynolds number dependent.
(Note that different considerations must be applied to the multi-point equations since
conditions at a point can depend on those at another, and in particular those at a
distance.)

From the preceding analysis, it is apparent that the outer wall jet at finite Reynolds
numbers is governed by not one, but two velocity scales. In particular, the mean
velocity and its gradients scale with Um, while the Reynolds shear stress scales with
u2∗. Therefore it is not immediately obvious how the remaining turbulence quantities
should scale. In particular, do they scale with Um or u∗, or both? If the latter, then
quantities scaled in the traditional way with only one of them will exhibit a Reynolds
number dependence and will not collapse, even in the limit of infinite Reynolds
number. It has already been noted in the plots of the previous section that this is
indeed the case.

In view of the plots of the preceding section, it is reasonable to inquire under what
conditions the equations for other turbulence quantities admit fully similar solutions.
For the outer part of the wall jet at high Reynolds number, the equation for 〈u2〉 can
be written (Tennekes & Lumley 1972) as

U
∂〈u2〉
∂x

+ V
∂〈u2〉
∂y

= 2

〈
p

ρ

∂u

∂x

〉
+

∂

∂y

{−〈u2v〉}− 2〈uv〉∂U
∂y
− 2εu, (7.1)
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where εu is the energy dissipation rate for 〈u2〉 and the viscous transport term has
been neglected.

An order of magnitude analysis reveals the mean convection and turbulence trans-
port terms to be of second order in the turbulence intensity u′/U, so to first order the
equation reduces to simply a balance between production, dissipation and pressure
strain rate. It could then be argued that these second-order terms should be neglected
in the subsequent analysis, cf. Townsend (1976). It is precisely these second-order
terms, however, that distinguish one boundary layer type flow from another, or from
homogeneous flows (like channels and pipes) for that matter. Therefore, for a theory
which purports to represent growing shear layers like the wall jet, they must be
retained.

Similarity representations are sought for the new moments of the form

1
2
〈u2〉 = Ku(x)ku(ȳ), (7.2)〈
p

ρ

∂u

∂x

〉
= Pu(x)pu(ȳ), (7.3)

− 1
2
〈u2v〉 = Tu2v(x)tu(ȳ), (7.4)

εu = Du(x)du(ȳ). (7.5)

Similarity of the 〈u2〉-equation is possible only if†
Ku ∼ U2

m, (7.6)

Pu ∼ U3
m

δ

dδ

dx
, (7.7)

Tu2v ∼ U3
m

dδ

dx
, (7.8)

Du ∼ U3
m

δ

dδ

dx
. (7.9)

All of these are somewhat surprising: the first (even though a second moment like the
Reynolds stress) because the factor of dδ/dx is absent; the second, third and fourth
because it is present.

Similar equations can be written for 〈v2〉 and 〈w2〉 i.e.

U
∂〈v2〉
∂x

+ V
∂〈v2〉
∂y

= 2

〈
p

ρ

∂v

∂y

〉
+

∂

∂y

{−〈v3〉 − 2〈pv〉}− 2εv, (7.10)

U
∂〈w2〉
∂x

+ V
∂〈w2〉
∂y

= 2

〈
p

ρ

∂w

∂z

〉
+

∂

∂y

{−〈w2v〉}− 2εw. (7.11)

When each of the terms in these equations is expressed in similarity variables, the
resulting similarity conditions are

Dv ∼ Pv ∼ UmKv

δ

dδ

dx
, (7.12)

Dw ∼ Pw ∼ UmKw

δ

dδ

dx
, (7.13)

† Recall that the symbol ∼ is used herein to mean ‘has the same x-dependence as’, and should
not be confused with ‘order of magnitude’.
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Tv3 ∼ UmKv

δ

dδ

dx
, (7.14)

Tw2v ∼ UmKw

δ

dδ

dx
. (7.15)

There is an additional equation which must be accounted for; namely that the sum
of the pressure strain-rate terms in the component energy equations be zero (from
continuity). Thus, in similarity variables,

Pu(x)pu(ȳ) + Pv(x)pv(ȳ) + Pw(x)pw(ȳ) = 0. (7.16)

This can be true for all ȳ only if

Pu ∼ Pv ∼ Pw. (7.17)

An immediate consequence is that

Du ∼ Dv ∼ Dw ∼ Ds ∼ Umu
2∗

δ
, (7.18)

where Ds is the scale for the entire dissipation.
From equations (7.7), (7.12) and (7.13) it follows that the constraint imposed by

(7.17) can be satisfied only if

Ku ∼ Kv ∼ Kw ∼ U2
m. (7.19)

Thus all of the Reynolds normal stresses scale with U2
m, and not with u2∗ like the

Reynolds shear stresses. But this is exactly what was observed in figures 8 and 9.
The remaining equation for the Reynolds shear stress is given by

U
∂〈uv〉
∂x

+ V
∂〈uv〉
∂y

=

〈
p

ρ

(
∂u

∂y
+
∂v

∂x

)〉
+

∂

∂y

{−〈uv2〉}− 〈v2〉∂U
∂y
. (7.20)

This does not introduce any new similarity functions, but as in the boundary layer
analysis of GC, it does create an interesting problem. The x-dependence of the
last term (which is the leading-order term) is proportional to (UmRso/δ)dδ/dx ∼
(U3

m/δ)(dδ/dx)2. If both terms are required to have the same x-dependence, a new
constraint is imposed on the ones which already exist, namely

Kv ∼ Rsodδ

dx
∼ U2

m

(
dδ

dx

)2

∼ u2
∗
dδ

dx
. (7.21)

Recall that Rso is only asymptotically equal to u2∗ (from the matching), so the entire
Reynolds shear stress scale evolves to this limit with increasing Reynolds number.
Regardless, there is an apparent contradiction between equation (7.21) and equa-
tion (7.19). There are two possibilities for its resolution:

Either, the two conditions together require that in the limit of infinite Reynolds
number,

dδ

dx
∼ u2∗
U2
m

∼ constant. (7.22)

Or, the term which creates the contradiction must go to zero faster than the other
terms so the offending condition does not remain in the analysis. In fact, as for
the boundary layer, the possibility for this occurs since the terms on the left-hand
side of equation (7.20) are of order (dδ/dx)2 ∼ (u∗/Um)4 relative to the leading
term, whereas the highest-order terms in the normal stress equations are of order
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(dδ/dx) ∼ (u∗/Um)2. Therefore the mean convection terms in the Reynolds shear
stress equation will vanish faster in the limit of infinite Reynolds number than the
remaining terms in any of the Reynolds stress equations if dδ/dx→ 0.

It will be seen later that dδ/dx→ 0 is a necessary condition for ensuring that the
proper infinite Reynolds number dissipation limits can be satisfied, namely that the
local dissipation rate be finite. Therefore equation (7.22) is not relevant, nor must it
be satisfied.

It is clear from the above that the outer Reynolds stress equations indeed admit
similarity solutions in the infinite Reynolds number limit (to second order in u∗/Um),
just as the mean momentum equations (and just as for the boundary layer). It is
also clear from the figures shown earlier that the Reynolds stresses show a trend
toward collapse in a manner consistent with the analysis above, even for the modest
Reynolds numbers of the experiments. As noted earlier, nothing in the analysis or
the data suggests that this similarity state should be independent of upstream and
source conditions.

8. The overlap layer
Since both inner and outer similarity forms are non-dimensional profiles with

different scales and the ratio of the scales is Reynolds number dependent, any region
between the two similarity regimes cannot be Reynolds number independent, except
asymptotically. As noted earlier, however, both inner and outer scaled profiles, fi and
fo, describe the entire flow as long as the argument δ+ = δ/η is finite. Therefore at
finite Reynolds numbers, both equations (4.10) and (5.11) must describe the region
between the two similarity regimes. Thus the situation here is quite different from the
usual asymptotic matching problem where infinite Reynolds number inner and outer
solutions are extended and matched in an overlap region. Here both solutions are
valid everywhere, at least for finite Reynolds numbers. Hence the objective is not to
see if they overlap and match them if they do; rather, it is to determine whether the
fact that they degenerate at infinite Reynolds number in different ways determines
their functional forms in the common region they describe.

There are several pieces of information about the two profiles which can be utilized
in this determination without further assumptions.

First, since both inner and outer forms of the velocity profile must describe the
flow everywhere as long as the ratio of length scales, δ+ = δ/η, is finite, it follows
from equations (4.10) and (5.11) that

fo(ȳ, δ
+) = g(δ+)fi(y

+, δ+), (8.1)

where g(δ+) has been defined as

g(δ+) ≡ u∗/Um. (8.2)

Second, for finite values of δ+, the velocity derivatives from both forms of the
velocity must also be the same everywhere. This requires

ȳ

fo

dfo
dȳ

=
y+

fi

dfi
dy+

(8.3)

for all values of δ+ and y.
Third, both fo and fi must become asymptotically independent of δ+. Thus

fo(ȳ, δ
+)→ fo∞(ȳ), and fi(y

+, δ+)→ fi∞(y+) as δ+ →∞ (otherwise the velocity scales
have been incorrectly chosen). This is, in fact, the asymptotic invariance principle.
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Now the problem is that in the limit as δ+ →∞, the outer form fails to account for
the behaviour close to the wall while the inner fails to describe the behaviour away
from it. The question then is: In this limit (as well as for all finite values approaching
it) does there exist an ‘overlap’ region where equation (8.1) is still valid? This question
can be answered in the affirmative using the near-asymptotics methodology of George
(1995) and GC. The details are the same as for the boundary layer, and are included
in Appendix A. To leading order in δ+, there is, in fact, an overlap region in which

y+

fi

∂fi

∂y+

∣∣∣∣
δ+

= γ(δ+) (8.4)

and

ȳ

fo

∂fo

∂ȳ

∣∣∣∣
δ+

= γ(δ+), (8.5)

where γ(δ+) has been defined as

γ ≡ −δ
+

g

dg

dδ+
= − d ln g

d ln δ+
. (8.6)

Both equations (8.4) and (8.5) must be invariant to transformations of the form
y → y+ a where a is arbitrary (since the equation must be valid for any choice of the
origin of y). Therefore, the most general solutions are of the form

U

Um

= fo(ȳ, δ
+) = Co(δ

+)[ȳ + ā]γ(δ
+), (8.7)

U

u∗
= fi(y

+, δ+) = Ci(δ
+)[y+ + a+]

γ(δ+)
, (8.8)

where the parameters Co, Ci and γ are functions of δ+ and must be determined in
addition to a. It will be argued later that a+ is approximately constant. It is interesting
to note that the power law form of equations (8.7) and (8.8) was one of those derived
by Oberlack (1997) from a Lie group analysis of the equations for parallel shear
flows.

It follows immediately from equation (8.1) that the friction law is given by

u∗
Um

= g(δ+) =
Co(δ

+)

Ci(δ+)
δ+−γ(δ+)

. (8.9)

However, equation (8.6) must also be satisfied. Substituting equation (8.9) into equa-
tion (8.6) implies that γ, Co, and Ci are constrained by

ln δ+ dγ

d ln δ+
=

d

d ln δ+
ln

[
Co

Ci

]
. (8.10)

This constraint equation must be invariant to scale transformations of the form
δ+ → Dδ+ since the physical choice of δ+ = y+

1/2 is arbitrary. Thus the Reynolds

number dependence of γ and Co/Ci is independent of the particular choice of δ ∼ y1/2

made earlier; any other choice would simply be reflected in the coefficient D. This
will be of considerable importance in relating the wall jet parameters to those for the
boundary layer obtained earlier by GC. From equation (8.10) we see that both γ and
Co/Ci can be most conveniently expressed as functions of ln δ+ = lnDy+

1/2.

Since by the AIP, equations (8.7) and (8.8) must be asymptotically independent of
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Reynolds number, the coefficients and exponent must be asymptotically constant, i.e.

γ(δ+)→ γ∞,
Co(δ

+)→ Co∞,
Ci(δ

+)→ Ci∞,

as δ+ →∞. Moreover, Co∞ and Ci∞ must be non-zero, or else the solutions are trivial.
Also, GC have argued that γ∞ must also be non-zero to ensure a finite local energy
dissipation rate at infinite Reynolds number. Therefore none of these three important
constants can be zero.

Following GC, it is convenient to write the solution to equation (8.10) as

Co

Ci
= exp [(γ − γ∞) ln δ+ + h], (8.11)

where h = h(ln δ+) remains to be determined, but must satisfy

γ − γ∞ = −δ+ dh

dδ+
= − dh

d ln δ+
. (8.12)

The conditions that both Co∞ and Ci∞ be finite and non-zero require that:
either
Co, Ci and γ remain constant always;

or
(i) γ → γ∞ faster than 1/ ln δ+ → 0

and
(ii) h(ln δ+)→ h∞ = constant.

It follows immediately that
Co∞
Ci∞

= exp [h∞]. (8.13)

Note that condition (i) together with equation (8.12) requires that dh/d ln δ+ → 0
faster than 1/ ln δ+. Thus, regardless of the exact functional form of h, the leading
term must be h ∼ (ln δ+)α where α > 0 to satisfy condition (i).

The behaviour of u∗/Um obviously is determined by both γ and the ratio Co/Ci,
which are themselves inter-related by equation (8.10). By substituting equations (8.11),
(8.12), and (8.13) into equation (8.9), the friction law can be expressed as

u∗
Um

= exp [−γ∞ ln δ+ + h]. (8.14)

Using equation (8.13) this can be re-written as

u∗
Um

=
Co∞
Ci∞

δ+−γ∞ exp (h− h∞). (8.15)

Figures 13 and 14 show the mean velocity data in inner and outer variables for three
positions of the KEP data (x/b = 40, 70, and 100), together with the overlap solutions
of equations (8.8) and (8.7) using the h-function of CG and the parameters discussed
in § 10 below. Also plotted are two curves described in the following sections used
to extend the overlap solution to the wall. The overlap solution provides an excellent
fit to the LDA data from approximately y+ = 30 to ȳ = 0.1. Note that the overlap
region is not a straight line on a log-log plot because of the offset parameter a+ (or ā).

The KEP data for u∗/Um are plotted in figure 15 as a function of y+
1/2. Also shown

is equation (8.15), again using the h-function of GC and the parameters given below.
The agreement between theory and experiment is excellent.
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9. The inertial and mesolayer subregions
The mathematical character of the overlap region has been derived above and

is seen to follow directly from first principles without assumptions. It remains to
interpret these results physically. The overlap region is essentially the region of the
flow where neither convection by the mean motion nor viscous shear stress are of
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Figure 15. u∗/Um versus y+
1/2: KEP data.

major importance in the mean momentum balance. In the wall jet, it is clear from
the profiles presented earlier that these conditions are satisfied approximately in the
region bounded by 30 < y+ < 0.1y+

1/2 (or 30/y+
1/2 < ȳ < 0.1), or from just outside the

buffer region (where the total stress has evolved from primarily viscous to Reynolds
stress only) to just inside the velocity maximum which is near ȳ = 0.17 as noted earlier.
This is illustrated schematically in figure 2. It is important to note that neither mean
convection nor viscous effects are completely negligible in the overlap region at finite
Reynolds number, and this is the origin of the Reynolds number dependence of the
overlap solutions obtained above. In fact, GC have argued using the spectral energy
equations that even if viscous effects were small in the single-point equations, they
could never be negligible in the two-point equations in the lower part of the overlap
region, a subregion which they called the mesolayer. Below a value of y+ < 300
approximately, they argued that viscosity directly affects the multi-point Reynolds
stress equations, and hence the dissipation and Reynolds stress. Above y+ ≈ 300,
inertial effects dominate the nonlinear turbulence energy transfer; hence the term
inertial sublayer is used to describe it.

Thus the overlap region itself has two sublayers within it: the mesolayer and the
inertial sublayer. Obviously the latter can exist only when there is a substantial region
in the flow satisfying 0.1y+

1/2 > 300 or y+
1/2 > 3000. Few wall jet experiments satisfy this

criterion, and of those, none have been made with techniques which could measure the
near-wall region with sufficient accuracy to determine the wall shear stress. In the KEP
data, for example, the mesolayer comprises all of the overlap region. Note that this is
still substantially better than current DNS capability where even the conditions for a
mesolayer are not satisfied, namely 0.1y+

1/2 > 30! In such cases the velocity maximum

itself does not even occur in the outer region of the flow, and hence is dependent on
flow Reynolds number. Obviously the overlap analysis above should not be expected
to apply to such low Reynolds number flows. It is clear then that experiments and/or
simulations at much higher Reynolds numbers are necessary before the above theory
can be completely tested and the function h(ln δ+) determined beyond doubt.

In spite of the problems presented by the lack of data to test the overlap arguments
at sufficiently high Reynolds numbers, equivalent arguments have previously been
made for the turbulent boundary layer by GC for which there is at least some data.
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Figure 16. Velocity in inner variables for boundary layer and wall jet. Data of Johansson &
Karlsson 1989 and KEP, respectively.
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Figure 17. Reynolds shear stress in inner variables for boundary layer and wall jet. Data of
Johansson & Karlsson 1989 and KEP, respectively.

In fact, the overlap profiles, friction law, and constraint equation for both wall jet and
boundary layer are all of the same form. Therefore there is reason to hope that the
function h(ln δ+) might be the same for boundary layers and wall jets, at least to within
the scale factor D as noted above. These ideas will be formalized and tested below.

10. Wall jet versus boundary layer: a common inner region?
While the outer flows of the zero-pressure-gradient boundary layer and the wall

jet are, of course, entirely different, there is reason to suspect that the inner flows
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may be the same. First, both scale with the same inner variables, u∗ and ν. Second,
all the governing equations are exactly the same at infinite Reynolds number, and
even the terms which begin to appear at finite Reynolds number are the same. Third,
the overlap profiles in inner variables have exactly the same form. Fourth, for both
flows the leading term in the Taylor expansion around y = 0 is u+ = y+ and the

next non-zero term is the fourth-order term c4y
+4

, i.e. u+ = y++
+ c4y

+4
+ · · ·. And

finally, as the success of the GC h-function above makes clear, there is experimental
evidence. Figures 16 and 17 show the mean velocity and Reynolds stress profiles
in inner variables for the Johansson & Karlsson (1989) boundary layer experiment
(Rθ = 2.4 × 103) and the KEP wall jet profile for x/b = 70 (y+

1/2 = 1.8 × 103). The

mean velocity profiles are nearly identical for y+ < 100, while the Reynolds stress
profiles coincide for y+ < 35. Also shown on the figures are the composite velocity
given by equation (12.1) and the Reynolds stress profile derived by substituting its
derivative into equation (4.9). (The discontinuity arises from the splice described in
§ 12). These make it clear that the departure of the wall jet profiles from the boundary
layer profiles is indeed attributable to the outer flow which penetrates to relatively
low values of y+ at these Reynolds numbers.

Therefore it seems reasonable to hypothesize that:
the inner-variable parameters Ci∞, γ∞, a+ and c4 are the same for both the wall jet

and the zero-pressure-gradient boundary layer;
the Reynolds number dependence of the parameters Ci and γ is the same, to within

the scale factor D discussed in the preceding section.
It follows immediately from equation (8.10) that the outer parameter Co for the

wall jet can at most differ by a constant multiplicative factor from the boundary
layer values, since any other difference would change γ. Because this multiplicative
factor must also be reflected in Co∞, the only differences between the wall jet and the
boundary layer can be Co∞ and the scale factor D; otherwise the second hypothesis
is wrong. Finally, the all-important function, h(δ+) − h∞, must be the same for both
boundary layers and wall jets, since it determines the Reynolds number behaviour of
both γ and Co/Ci. (Recall that δ+ = Dy+

1/2.) (Note that a similar line of reasoning

was applied by Castillo (1997) to the pressure-gradient boundary layer.)
Thus, as discovered above, the GC empirical form for h for the boundary layer can

be incorporated directly here in the form

h =
A

(lnDy+
1/2)

α
. (10.1)

Note that while this may appear to be an arbitrary empirical equation, it is really
much more general. Since h→ h∞ as lnDy+

1/2 →∞, only negative powers are possible

in an expansion of h − h∞ for large values, of which equation (10.1) is at least the
leading term.

It follows from equations (8.12), (8.11), and (8.15) that

γ − γ∞ =
αA

(lnDy+
1/2)

1+α
, (10.2)

Co

Ci
=
Co∞
Ci∞

exp [(1 + α)A/(lnDy+
1/2)

α] (10.3)

and
u∗
Um

=
Co

Ci

(
Dy+

1/2

)−γ
=
Co∞
Ci∞

[Dy+
1/2]

−γ∞ exp [A/(lnDy+
1/2)

α]. (10.4)
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For the boundary layer, GC found α = 0.46, A = 2.90, Ci∞ = 55, γ∞ = 0.0362,
and a+ ≈ −16. If the hypothesis is correct, these values should be the same for the
wall jet. Alternatively, if the parameters or the empirical form for h have been more
accurately determined for the wall jet, then they should also describe the boundary
layer, to within the scale factor D and Co∞ which must be determined for each flow
separately. In fact, the CG parameters describe the KEP wall-jet velocity profiles data
to within 5% between y+ = 30 and ȳ = 0.1 using Co = Co∞ = 1.26 and D = 1.0.
But as illustrated in figures 13 to 15 above, a slight change to Co = Co∞ = 1.30
and Ci∞ = 56.7 (so Co∞/Ci∞ = 0.023 is unchanged) reduces the maximum error in
the overlap range of the mean velocity profiles to less than 2%, which is within the
experimental uncertainty. Both sets of parameters predict the friction data to within
1% (since u∗/Um depends only on the ratio of Co∞ to Ci∞, and not their individual
values). As shown later, a subtle consequence of this will be that all of the differences
in spreading rate among the various experiments can be attributed to the parameter
B1 defined in equation (6.2).

11. A mesolayer interpretation of a+

The a appearing in equations (8.8) and (8.7) has been interpreted by GC as arising
from the effect of the turbulence Reynolds number near the wall on the two-point
Reynolds stress equations. A useful form of the inner velocity profile can be obtained
by expanding the inner velocity profile of equation (8.8) for y+ � a+. The result is

U

u∗
= Ciy

+γ + γCia
+y+γ−1

+ 1
2
γ(γ − 1)Cia

+2
(y+)γ−2 + · · · . (11.1)

Equation (11.1) can also be written in outer variables as

U

Um

= Coȳ
γ + γāCoȳ

γ−1 + 1
2
γ(γ − 1)Coā

2(ȳ)γ−2 + · · · , (11.2)

where ā = a+/y+
1/2.

These forms are useful for two reasons: First, they are excellent approximations
to equation (8.8) for all values of y+ > −a+ (or ȳ > −ā). Second, it is easier to
incorporate them into a composite solution for the inner region since they do not
have the singularity at y+ = −a+. These profiles have been included on figures 13
and 14 using the GC value of a+ = −16.

12. Composite velocity profiles for the inner and overlap regions
A velocity profile valid over the entire inner and overlap regions can be obtained

using equation (11.1) if empirical relations are introduced to account for the variation
of fi(y

+, δ+) inside the overlap region. This is analogous to the near-wall and buffer-
layer empirical profiles employed by GC for boundary layers which use an empirical
relation to splice together the various regions of the flow so that a continuous profile
is obtained.

The term ‘buffer layer’ was used by GC to refer to the region of adjustment from
linear to the meso/overlap region. They proposed splicing the near-wall and expanded
form of the overlap solutions using

U

u∗
= fi(y

+) = (y+ + c4y
+4

+ c5y
+5

) exp (−dy+6
)

+Ciy
+γ[1 + γa+y+−1

+ 1
2
γ(γ − 1)a+2

y+−2
][1− exp (−dy+6

)]. (12.1)
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Figure 18. Skin friction coefficient versus Rm = Umym/ν.

The y+6
-dependence of the exponentials allows not only the no-slip condition to

be satisfied at the wall, but also the boundary conditions on the first three velocity
derivatives. The damping parameter is chosen as d = 8 × 10−8 to fix the changeover
at y+ ≈ 15. A constant value of c4 = −0.0003 is in good agreement with both the
velocity data of KEP and the corresponding expansion for the Reynolds shear stress

near the wall (i.e. 〈−uv〉+ = 4c4y
+3

). The value of c5 cannot be determined with any
accuracy from the data, so was arbitrarily chosen as c5 = 1.35 × 10−5 to provide
the best splice between the near-wall and mesolayer profiles. The value of a+ was
determined by GC to be approximately −16.

Figure 16 shows equation (12.1) together with the velocity data in inner variables
for the KEP profile (x/b = 70) and the boundary layer data of Johansson & Karlsson
(1989). Figure 17 shows the corresponding Reynolds stress profile calculated using
equation (12.1) and equation (4.9), together with the measured Reynolds stress from
these experiments. The calculated profiles use the modified GC values described
earlier for the inner parameters (γ∞ = 0.0362, Ci∞ = 56.7, a+ = −16, α = 0.46, and
A = 2.9) with D = 1.00 and Co∞ = 1.30. The agreement between experiment and
theory is remarkable. The slight difference in Ci∞ (from the boundary layer value)
is undoubtedly attributable to the higher quality of the wall jet data. Overall, the
agreement between the composite profile and the velocity data is within 1% for
ȳ < 0.1.

13. The asymptotic friction law
As noted above, it has long been customary to present friction data plotted against

the local Reynolds number based on the velocity maximum and half-width (or
location of velocity maximum). Such a plot is not naturally suggested by the theory
presented here since the parameters depend on y+

1/2, and not on Umy1/2/ν or Umym/ν.

It can easily be generated on a spreadsheet, however, by assuming a value for y+
1/2,

then calculating u∗/Um and from the two, Rm. To facilitate comparison with earlier
empirical friction laws and data, such a plot is presented here as figure 18, where it has
again been assumed that ym/y1/2 = 0.17. Representative values are shown in table 1.
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y+
1/2 Co Ci γ u∗/Um Rm = ymUm/ν

(given) (≈ Co∞) (eqn. (10.3)) (eqn. (10.2)) (eqn. (8.9) or (10.4)) (ym/y1/2 = 0.17)

1000 1.3 9.53 0.1151 0.0616 2758
1500 1.3 9.95 0.1089 0.0589 4329
2000 1.3 10.25 0.1050 0.0571 5952
3000 1.3 10.65 0.1000 0.0548 9307
5000 1.3 11.14 0.0946 0.0521 16301
7000 1.3 11.45 0.0914 0.0505 23547

10000 1.3 11.77 0.0884 0.0489 34734

Table 1. Wall jet parameters calculated as a function of y+
1/2.

Since there is no new information, it is not surprising that the same good agreement
noted above is achieved. Also shown is the Bradshaw & Gee (1960) correlation. This
was originally given by the authors in terms of cf as a power law in Rm ≡ Umym/ν;
in particular, cf = 0.0315R−0.182

m . This transforms to u∗/Um = 0.122(y+
1/2)

−0.100 using

the KEP estimate of ym/y1/2 = 0.17. There is a remarkable correspondence between
the theoretical curve and the empirical relation of Bradshaw & Gee (1960). The
theoretical and empirical curves diverge as the Reynolds number increases since the
power exponent continues to drop in the former, but is fixed in the latter. Obviously
the empirical expressions should not be used outside the limited range for which they
were established by experiment, but the theory is not so limited.

As shown in equation (10.4), u∗/Um is entirely determined by the two constants,
γ∞ and Co∞/Ci∞, and the function h(Dy+

1/2). In the limit of infinite Reynolds number,

however, even the function h must be constant, so the asymptotic friction law is
indeed a power law with constant coefficients, i.e.

u∗
Um

→ Co∞
Ci∞

(Dy+
1/2)

−γ∞ . (13.1)

Some idea of when this limiting power law is valid can be obtained by expanding
the exponential of equation (10.4) in powers of A/(ln(Dy+

1/2)
α:

exp [A/(lnDy+
1/2)

α] = 1 +
A

(lnDy+
1/2)

α
+ · · · . (13.2)

Clearly the second term must be negligible for the power law limiting behaviour to
dominate; thus the limiting power law behaviour is obtained when

lnDy+
1/2 � [A]1/α. (13.3)

For the values above this would require y+
1/2 � 2.4 × 104, which is an order of

magnitude above the existing experiments.

14. Implications for y1/2 and Um versus x
Figures 19–22 show the variation of the half-width, y1/2, and the velocity maximum,

Um, with downstream distance, x, for the KEP, AJL and WKH data. These data are
plotted using both the traditional normalization using b and Uo (cf. Launder & Rodi
1981), and using Mo and ν (cf. Narasimha et al. 1973; WKH). Also shown for the
latter are the theoretical curves derived below.
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Figure 19. Variation of half-width with downstream distance, y1/2/b versus x/b: KEP, AJL
and WKH data.
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symbols as figure 19.

It is not entirely clear whether the data collapse or not even when plotted using
the momentum/viscosity scaling (which is seen to work somewhat better than the
scaling using Um and b). The same lack of collapse was observed by WKH who
attempted to remove the trends with a virtual origin, with limited success. These
differences between data sets were noted in § 6 in the normalized plots of Um versus
y1/2. Clearly source Reynolds number alone cannot explain the differences since the
WKH source Reynolds numbers overlap those of AJL and KEP. As noted earlier
there is nothing in the single-point similarity equations themselves to suggest that the
effect of initial conditions dies off. It is precisely here in B1, dy1/2/dx and dUm/dx
where the differences appear. Nonetheless, the cross-flow and rectification errors in
the hot-wire measurements due to the turbulence intensity at least account for some
of the observed differences. All of the hot-wire estimates of y1/2 are about 10% to
15% higher than the LDA and theoretical results, consistent with the error estimate of
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Figure 21. Variation of centreline velocity with distance, 1/(U/Uo)
2 versus x/b: KEP, AJL and

WKH data; symbols as figure 19.
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2: KEP, AJL and WKH data; symbols as figure 19.

EKP. Near the velocity maximum, the hot-wire-obtained mean velocity measurement
are 3% to 5% too high, which means that the plotted hot-wire data in figure 22
should be 6% to 10% too low. This is at least in the correct direction for the AJL
data, but cannot account for the WKH data. As noted in § 6, however, we might
have overestimated the WKH values of Mo by about the same amount which would
have the opposite effect. So the role of the initial conditions, if any, must remain
unresolved for now.

It has regularly been conjectured (e.g. Launder & Rodi 1981) that the half-width of
the plane wall jet grows linearly with distance. It will be argued below that dy1/2/dx
is proportional to the shear stress, and it has already been shown that the only
possible asymptotic limit for this is zero. However, dy1/2/dx→ 0 does not imply that
the wall jet stops growing, only that it cannot grow faster than linear. For example,
if dy1/2/dx ∼ xp where 0 > p > −1, then clearly dy1/2/dx → 0 as x → ∞, but
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y1/2 = x1+p/(1 + p) continues to increase. The growth is not linear, however, unless
p ≡ 0, which we shall see it is not. In fact, most experiments which have attempted to
establish empirical power laws for the x-dependence of the half-width conclude that
the growth rate is slightly less than linear. For example, WKH and Narasimha et al.
(1973) suggest on empirical grounds that y1/2 ∼ (x − xo)0.88 and y1/2 ∼ (x − xo)0.91,
respectively. As will be shown below, there is no theoretical justification for such
power laws in x except for very large values of the Reynolds number, and well above
any experiments to-date.

The x-dependence of y1/2 can be considered using the momentum integral equation
in outer similarity variables, which can be written as

U−2
m

d

dx

[
U2
my1/2I2

]
= − u2∗

U2
m

, (14.1)

where I2 is defined by

I2 =

∫ ∞
0

[f2
o + 2(ku − kv)]dȳ. (14.2)

The turbulence normal stress term, (ku − kv) is of second order, and could have
been omitted with no loss of generality but an error of approximately 5% would
be introduced. Note that I2 becomes asymptotically independent of the Reynolds
number in the limit as y+

1/2 →∞.

The similarity condition of equation (5.7) (i.e. Um ∼ yn1/2) implies that

y1/2

Um

dUm

dx
= n

dy1/2

dx
. (14.3)

It follows after some manipulation that{
(1 + 2n)I2 +

dI2

d ln y+
1/2

}[
dy1/2

dx

]
= − u2∗

U2
m

. (14.4)

In the limit as y+
1/2 →∞, this reduces to

(1 + 2n)I2

[
dy1/2

dx

]
= − u2∗

U2
m

. (14.5)

Note the appearance of the exponent n from the similarity condition of equation (5.7).
The value n = −1/2 is a special case since the corresponding shear stress must be

zero, and hence the growth rate either becomes undefined or must be exactly zero.
In fact, from equation (5.7) it is clear that n = −1/2 would require that that U2

my1/2

be constant, which is exactly the momentum conservation condition for a free plane
jet (cf. George 1995), and this makes sense only if there is no momentum loss to the
boundary. Given the presence of the wall, this would be a possibility only at infinite
source Reynolds number, if at all. For finite source Reynolds numbers, the presence
of the wall dictates a continuing momentum loss to the wall so that n < −1/2, and
as a consequence y1/2 must grow slower than linearly with x, exactly as suggested by
Narasimha et al. (1973) , WKH and AJL on empirical grounds. But there is, to this
point at least, nothing in the equations to indicate that the value of n is universal,
although the experiments cited earlier in § 6 suggest that it might be.

The derivative, dy1/2/dx, in equation (14.5) can be replaced by either d(y1/2/b)/
d(x/b) or dY1/2/dX with no loss of generality, where Y1/2 is defined as before and X
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y+
1/2 dy1/2/dx X = Mox/ν

2 Y = Moy1/2/ν
2 1/(νUm/Mo)

2

(given) (eqn. (14.5)) (eqn. (14.9)) (eqn. (14.6)) (eqn. (6.2))

1000 0.0870 2.35E+09 2.26E+08 1.94E+08
1500 0.0794 6.72E+09 5.87E+08 5.31E+08
2000 0.0747 1.41E+10 1.15E+09 1.08E+09
3000 0.0687 3.96E+10 2.97E+09 2.94E+09
5000 0.0622 1.44E+11 9.74E+09 1.03E+10
7000 0.0585 3.35E+11 2.12E+10 2.35E+10

10 000 0.0548 8.17E+11 4.84E+10 5.61E+10

Table 2. Wall jet development as a function of y+
1/2. (See table 1 for parameters.)

by X ≡ xMo/ν
2. The momentum–viscosity scaled version is used below to derive the

X-dependence of Y1/2 and νUm/Mo.
Since n, I2 and u∗/Um can be determined directly from the data, equation (14.5)

can be used to calculate dy1/2/dx. Alternatively, n can be determined if I2, u∗/Um,
and dy1/2/dx are known. In fact, this is probably the best way to determine n since
2n is very close to −1, so the difference between n and −1/2 is magnified. The value
so obtained can then be used together with the continuity equation developed in the
next section to provide an overall consistency check on the flow and data. From the
KEP data, the value of I2 for x/b = 40, 70, 100 (and even 150) is 0.78 (0.745 if
the turbulence terms are neglected). Using this, the measured values of u∗/Um and
dy1/2/dx, and averaging the result yields n = −0.528, which is the value cited earlier
in § 5.

Since the values of n and I2 can now be assumed known, then the x-dependence
of Y1/2 (or y1/2/b) can be calculated numerically using equation (14.5) together with
the friction law of equation (10.4). The local value of y+

1/2 must be determined for
each value of x before the integration can be performed, so an inverse procedure was
carried out using a spreadsheet, the results of which are summarized in table 2. It
follows after some manipulation that

Moy1/2

ν2
= Y1/2 =

[
1

B1

(
CiD

γ

Co

)]1/(1+n)

[y+
1/2]

(1+γ)/(1+n) (14.6)

so Y1/2 can be obtained directly for each selected value of y+
1/2. Moreover, from

equations (14.5), (10.4), and (6.2) it can also be shown that

dY1/2

dX
=

[ −1

(1 + 2n)I2

](
Co

Ci

)2/(1+γ)

[DB1Y
(1+n)

1/2 ]−2γ/(1+γ). (14.7)

Note especially the appearance of B1 in equation (14.7). This is the only way for
the source dependence of y1/2 and Um to influence the growth rate calculation if n is
assumed universal. As noted in § 6, it is not at all clear whether B1 is universal.

A finite difference estimate of dY1/2/dX is given by

dY1/2(X)

dX
≈ Y1/2(X + ∆X)− Y1/2(X)

∆X
. (14.8)

From this X −Xo can be readily obtained by summing the ∆X estimated from

∆X =
Y1/2(X + ∆X)− Y1/2(X)

dY1/2/dX
, (14.9)
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where for each incremental increase in the value of y+
1/2 from a small value, the values

of Y1/2 are obtained from equation (14.6) and dY1/2/dX from equation (14.8). Note
that Xo is a possible virtual origin chosen to be zero for the computations shown in
figure 20 and table 2. The results shown were obtained by starting at y+

1/2 = 40 and

using increments of ∆y+
1/2 = 10.

Figure 20 shows the calculated variation of Y1/2 versus X for the using the values of
B1 = 1.85 and n = −0.528 determined in § 6. Also shown are the KEP, AJL and WKH
data. There is excellent agreement between data and theory, especially if the errors
for hot-wires in high intensity turbulence are taken into account. It is straightforward
to convert this Y1/2 versus X information to y1/2/b versus x/b using equation (6.3)
and the definitions of Y1/2 and X, at least for a top-hat profile source, but the results
depend B1 and source Reynolds number as noted in § 6.

The velocity maxima can readily be calculated as a function of x once the x-
variation of y1/2 is known using equation (6.2). The calculated results using B1 = 1.85
are shown in figure 22, along with the experimental data of KEP, AJL and WKH.
The experiments and theory are in reasonable agreement. Note that the agreement
for each individual data set is considerably improved if the optimum values of B1 for
each data set are used. As noted above, the uncertainty of the hot-wire data does not
seem to warrant this tinkering.

As noted above, it has long been customary to fit power laws to wall jet data. In
fact, power law expressions for y1/2 and Um as functions of x can be obtained by
assuming the parameters Ci, Co and γ to be locally constant. These, of course, are not
valid for the entire range of x, but are useful in understanding such fits from earlier
experiments. If this assumption is made, then the dependence of Ci, Co and γ on y+

can be ignored, and equation (14.7) can be integrated directly to yield

Y1/2 = B2,local(X −Xo)
(1+γ)/(1+3γ+2nγ), (14.10)

where

B2,local ≡
{
−(1 + 3γ + 2nγ)

(1 + γ)(1 + 2n)I2

(
Co

Ci

)2/(1+γ)

(DB1)
−2γ/(1+γ)

}(1+γ)/(1+3γ+2nγ)

(14.11)

and Xo is a virtual origin which depends on the Reynolds number range under
consideration. Note that there would be an additional Reynolds number dependence
in the coefficient if y1/2/b and x/b had been used instead of Y1/2 and X.

If the parameters are evaluated at y+
1/2 = 1500 (which corresponds approximately

to the KEP experiment at x/b = 100), then Co/Ci = 0.12, and γ = 0.109. Thus locally,
Y1/2 = 0.515(X − Xo)

0.915. This exponent is exactly that obtained by AJL, and very
much in the range observed by WKH and Narasimha et al. (1973). The coefficient
is quite different, however, indicating that the virtual origin must be quite large
and negative, in fact nearly as large as x/b itself to achieve estimates in reasonable
agreement with the data. The fact that these are only local estimates means that
the power will increase as higher local Reynolds numbers are achieved, as will the
magnitude of the virtual origin required. Recall that no virtual origin at all was
required in the numerical integration above which made no assumptions about the
constancy of the parameters, but evaluated them at each step in the integration.

Finally, it is easy to show that the true asymptotic behaviour is indeed a power law.
Like the friction law, however, this asymptotic will be achieved at Reynolds numbers
far above those of current experiments. In the limit as y+

1/2 → ∞, all the parameters
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are exactly constant, so in this limit equation (14.11) represents the exact asymptotic
variation of Y1/2. Using n = −0.528, I2 = 0.78, γ∞ = 0.0362, Co∞/Ci∞ = 0.023 and
B1 = 1.85 yields B2∞ = 0.019 and the exponent is 0.97. Thus the asymptotic variation
of Y1/2 with X is nearly linear, but not quite. The difference from linear behaviour is
quite important, however, since as shown above it is a consequence of the continuing
momentum loss to the wall. And even this relation depends on the value of B1,
and hence perhaps the source conditions. Note that this limiting power law growth
rate cannot be achieved until the friction law has achieved its asymptotic power law,
namely when the inequality of equation (13.3) is satisfied.

15. Implications of the continuity equation
The averaged continuity equation can be integrated from the wall to y to obtain

V = −
∫ y

0

∂U

∂x
dy′. (15.1)

It follows immediately that

V∞ = −
∫ ∞

0

∂U

∂x
dy′. (15.2)

Obviously any attempt to realize a plane wall jet must satisfy these equations. In
general they are difficult to apply, however, because of the x-derivatives. As will be
shown below, similarity simplifies this process considerably so that continuity can be
used both to verify the two-dimensionality of the flow and to provide further evidence
that the flow is indeed similar and the measurements of it are correct.

The outer-variables version of the continuity equation can be easily derived by
substituting equation (5.11) to obtain

V

Um

=

[
dy1/2

dx

]
ȳfo(ȳ, y

+
1/2)−

[
y1/2

Um

dUm

dx
+

dy1/2

dx

] ∫ ȳ

0

fo(ξ, y
+
1/2)dξ

−
[
y1/2

dy+
1/2

dx

]
∂

∂y+
1/2

∫ ȳ

0

fo(ξ, y
+
1/2)dξ. (15.3)

Note that this equation is valid for all values of ȳ as long as y+
1/2 is finite.

Since fo is a similarity solution of the outer equations as y+
1/2 → ∞ (i.e. fo → fo∞)

the last integral is Reynolds number independent in the limit; hence the last term
vanishes in the limit. Thus in the limit, the velocity profile in the outer region of the
flow must satisfy

V

Um

[
dy1/2

dx

]−1

= ȳfo∞(ȳ)− (1 + n)

∫ ȳ

0

fo∞(ξ)dξ, (15.4)

where equation (14.3) has been to used to relate dUm/dx to dy1/2/dx. It follows
immediately that in the same limit, the entrainment velocity is given by

V∞
Um

= −(1 + n)I1

[
dy1/2

dx

]
(15.5)

where

I1 ≡
∫ ∞

0

fo∞(ξ)dξ. (15.6)
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Figure 23. Profiles of V/Um/(u
2∗/U2

m); KEP data, theory: n = −0.528, I1 = 1.05.

Note that since from equation (14.5) dy1/2/dx depends on y+
1/2, so does V∞/Um. On

the other hand, if the value of n (and hence the corresponding mean velocity profiles)
are universal, then the ratio (V∞/Um)/[dy1/2/dx] must be a universal constant.

The integral, I1, in equation (15.6) was estimated from the KEP data by averaging
the integral of U/Um for x/b = 40, 70, and 100; the result was I1 ≈ 1.05 to within 2%.
The value of n = −0.528 was obtained using the integral momentum equation as de-
scribed in § 14 above. Using these, the calculated value of (V∞/Um)/[dy1/2/dx] for the
KEP data is 0.50. This can be compared to the ratios inferred from the measurements
using the local estimates of V∞/Um and dy1/2/dx which were −0.47,−0.48,−0.55,
and −0.71 for positions x/b = 40, 70, 100, and 150 respectively. Clearly the value for
x/b = 150 differs substantially from the rest, but so does the value of I1 there which
increases to 1.10. Both of these are clear indicators that similarity is breaking down
because of either a lack of two-dimensionality, or a return flow, or both.

If the flow satisfies the similarity conditions, then the profile of V/Um in the outer
region should collapse when normalized by either dy1/2/dx or u2∗/U2

m. In the KEP
experiment the latter are determined with more accuracy than the former because
of the excellent resolution of the measurements near the wall. Figure 23 shows
the actual profiles of (V/Um)/(u2∗/U2

m). Also shown are the profiles calculated from
equation (15.4) using the values of n and I1 cited above, and from integrating the
U/Um profile for the x/b = 70 position. The agreement between the measured and
calculated peak values is within 10% for x/b = 40, 70 and 100, but the relative error
increases to nearly 30% for x/b = 150. Also shown on the plot as a horizontal dashed
line is the theoretical limiting value given by

V∞/Um

u2∗/U2
m

=
(1 + n)I1

(1 + 2n)I2

. (15.7)

Using the values cited above yields (V∞/Um)/(u2∗/U2
m) = −11.3 (which corresponds to

the value estimated above of (V∞/Um)/[dy1/2/dx] = −0.50).
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The discrepancy between the measured and calculated profiles at y/b = 40 can in
part be attributed to the Reynolds number dependent terms in equation (15.4) which
are not yet negligible since the flow is still developing. Such is not the case beyond
x/b = 100 where the outermost data show substantial development with distance,
thus providing additional evidence that the return flow in the facility is beginning to
affect the wall jet part of the flow as noted above.

Another part of the discrepancies must be attributed to measurement errors. EKP
have noted that since the values of V are very small compared to U, a very tiny error
in the angle between the beams of an LDA system can make a large error in the
determination of V . For example, a change in the beam angle of only 0.3◦ makes about
a 10% difference in the V -profiles. Therefore, in cases where similarity behaviour has
been established using the U-velocity profile, the V -profiles calculated from similarity
may be considered more accurate than those measured. This is a wonderful example
of how the theory can be used to refine the measurement parameters, as long as both
two-dimensionality and similarity have been established.

The inner part of the wall jet can also be considered by using the inner scaled
profile of equation (4.10). It is straightforward to show that

V

u∗
= −

[
η

u∗
du∗
dx

]
y+fi(y

+)− ηdy+
1/2

dx

d

dy+
1/2

∫ y+

0

fi(ξ, y
+
1/2)dξ. (15.8)

In the limit as y+
1/2 →∞ this reduces to

V

u∗
= −

[
η

u∗
du∗
dx

]
y+fi(y

+). (15.9)

It is easy to show from a Taylor expansion and the inner momentum equation that the

velocity very near the wall is given by u+ = y++c4y
+4

+· · · and v+ = e2y
+2

+e3y
+3

+· · ·
(see Monin & Yaglom 1971). It follows immediately from equation (15.9) that

v+ = −
[
η

u∗
du∗
dx

]
[y+2

+ c4y
+5

+ · · ·]. (15.10)

Thus e2 = [(η/u∗)/(du∗/dx)], e3 = e4 = 0 and e5 = c4[(η/u∗)/(du∗/dx)]. Interestingly,
e2 and e5 are Reynolds number dependent, contrary to the usual assumptions that
they are constant.

By using the friction law derived, equation (10.4), together with the similarity
condition of equation (5.7), it can be shown after some manipulation that

η

u∗
du∗
dx

=

[
n− γ
1 + γ

]
1

y+
1/2

dy1/2

dx
(15.11)

or using equation (14.5)

η

u∗
du∗
dx

= −
[
n− γ
1 + γ

][
1

(1 + 2n)I2y
+
1/2

](
u∗
Um

)2

. (15.12)

Given the experimental difficulties in obtaining mean V -velocity data so close to the
wall (both because of its very small magnitude and the proximity of the wall), the
velocity calculated from equations (15.9) using (15.12) is probably the only way V can
be obtained here. This is an excellent example of how theory can be used to obtain
indirectly a result which is not measurable at all.
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16. Summary and conclusions
A new theory has been set forth based on the asymptotic invariance principle in

which the outer wall jet is governed by different scaling parameters than commonly
believed. In particular, the Reynolds shear stress in the outer layer scales to first order
with u2∗, so that the outer layer is governed by two velocity scales, Um and u∗. Both
inner and outer regions become asymptotically independent of the Reynolds number,
and reduce to similarity solutions of the inner and outer boundary layer equations in
the limit of infinite Reynolds number. A consequence of this is that no scaling laws
can perfectly collapse the data at finite Reynolds number.

By examining the inner and outer velocity profiles using near-asymptotics, the
velocity in the overlap layer was shown to exhibit power law behaviour, but with
an exponent which was only asymptotically constant. This overlap region is not
Reynolds number invariant in either inner or outer variables, contrary to com-
mon belief, but consistent with recent experimental findings. Another consequence
of the analysis was that the friction coefficient varied as a power of the local
Reynolds number, the power and coefficients being entirely determined by the
velocity parameters, or vice versa. New scaling laws for the turbulence quantities
in the outer layer were also derived from similarity considerations of the turbulence
Reynolds stress equations. The theory was shown to be in excellent agreement with
the all the experimental data. In addition, the hypothesis that the inner flow of the
zero-pressure-gradient boundary layer and the wall jet are the same appears to be
supported.

At the very least, a strong motivation has been provided for a careful re-analysis of
the older experiments, and perhaps a new generation of experiments over the entire
range of Reynolds numbers. Of particular interest will be determining whether there
are features of the initial conditions which are preserved, and what exactly are the
asymptotic values of the parameters. The success of the theory in correlating the
observations to-date, all of which were made before the theory was deduced, lends
considerable credibility to the AIP approach to similarity.

The authors are grateful to L. Castillo, J. Citriniti, D. Ewing, B. Johansson, and J.
Persson for their assistance and helpful comments during the course of this work. They
are also grateful to Chalmers University of Technology and Vattenfall Utveckling AB
for their support for this cooperative effort, without which this work would have
been impossible. The assistance of I. Wygnanski and M. Zhou of the University of
Arizona in accessing and understanding the WKH data was very much appreciated.
W.K.G. would like to also express his gratitude to the former for his suggestion at
IIT in January 1995 that the wall jet might be an interesting application of the AIP
approach.

Appendix A. Details of the overlap analysis
The methodology used to determine the overlap characteristics was introduced

by George (1995) and was termed ‘near-asymptotics’. It is necessary because the
traditional approaches to asymptotic matching cannot account for the possibility of
a power exponent tending to zero, which cannot be ruled out without additional
arguments. This Appendix has been adapted from the GC paper, and is included
here for completeness.

The question of whether there is a common region of validity can be investigated
by examining how rapidly fo and fi are changing with δ+. From the Taylor expansion
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of the velocity derivatives in equation (8.3) about a fixed value of δ+,

fi(y
+; δ+ + ∆δ+)− fi(y+; δ+)

∆δ+fi(y+; δ+)
≈ 1

fi(y+; δ+)

∂fi(y
+; δ+)

∂δ+

∣∣∣∣
y+

≡ Si(δ+, y+) (A 1)

and

fo(ȳ; δ+ + ∆δ+)− fo(ȳ; δ+)

∆δ+fo(ȳ; δ+)
≈ 1

fo(ȳ; δ+)

∂fo(ȳ; δ+)

∂δ+

∣∣∣∣
ȳ

≡ So(δ+, ȳ). (A 2)

Thus Si and So are measures of the Reynolds number dependences of fi and fo
respectively. Both vanish identically in the limit as δ+ →∞. If y+

max denotes a location
where outer flow effects begin to be strongly felt on the inner scaled profile, then
for y+ < y+

max, Si should be much less than unity (or else the inner scaling is not
very useful). Similarly, if ȳmin measures the location where viscous effects begin to be
strongly felt (e.g. as the linear velocity region near the wall is approached), then So
should be small for ȳ > ȳmin. Obviously either Si or So should increase as these limits
are approached. Outside these limits, one or the other should increase dramatically.

The quantities Si and So can, in fact, be used to provide a formal definition of an
‘overlap’ region where both scaling laws are valid. Since Si will increase drastically
for large values of y for given δ+, and So will increase for small values of y, an
‘overlap’ region exists only if there exists a region for which both Si and So remain
small simultaneously. In the following paragraphs, this condition will be used in
conjunction with equation (8.1) to derive the functional form of the velocity in the
overlap region at finite Reynolds number.

Because of the movement of the matched layer away from the wall with increasing
x, it is convenient and necessary to introduce an intermediate variable ỹ which can
be fixed in the overlap region all the way to the limit, regardless of what is happening
in physical space (see Cole & Kevorkian 1981). A definition of ỹ which accomplishes
this is given by

ỹ = y+δ+−m (A 3)

or

y+ = ỹδ+m. (A 4)

Since ȳ = y+/δ+, it follows that

ȳ = ỹδ+m−1
. (A 5)

For all values of m satisfying 0 < m < 1, ỹ can remain fixed in the limit as δ+ → ∞
while ȳ → 0 and y+ → ∞. Substituting these into equation (8.1) yields the matching
condition on the velocity as

fo(ỹδ
+m−1

, δ+) = g(δ+)fi(ỹδ
+m, δ+). (A 6)

Now equation (A 6) can be differentiated with respect to δ+ for fixed ỹ to yield
equations which explicitly include Si and So. The result is

∂fo

∂ȳ

∣∣∣∣
δ+

∂ȳ

∂δ+
+
∂fo

∂δ+

∣∣∣∣
ȳ

=
dg

dδ+
fi + g

{
∂fi

∂y+

∣∣∣∣
δ+

∂y+

∂δ+
+
∂fi

∂δ+

∣∣∣∣
y+

}
. (A 7)

Carrying out the indicated differentiation of y+ and ȳ by δ+ (for fixed ỹ), and
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multiplying by δ+/fo yields (after some rearranging)

(m− 1)
ȳ

fo

∂fo

∂ȳ

∣∣∣∣
δ+

− my
+

fi

∂fi

∂y+

∣∣∣
δ+

=
δ+

g

dg

dδ+
+ δ+

{
1

fi

∂fi

∂δ+

∣∣∣∣
y+

− 1

fo

∂fo

∂δ+

∣∣∣
ȳ

}
. (A 8)

It follows immediately from equation (8.3) that

ȳ

fo

∂fo

∂ȳ

∣∣∣∣
δ+

= −δ
+

g

dg

dδ+
− δ+

{
1

fi

∂fi

∂δ+

∣∣∣∣
y+

− 1

fo

∂fo

∂δ+

∣∣∣∣
ȳ

}
. (A 9)

Equation (A 9) can be rewritten as

ȳ

fo

∂fo

∂ȳ

∣∣∣∣
δ+

= γ(δ+)− δ+(Si − So) (A 10)

where γ = γ(δ+) is defined by

γ(δ+) ≡ −δ
+

g

dg

dδ+
= − d ln g

d ln δ+
. (A 11)

Note that the first term on the right-hand side of (A 10) is at most a function of δ+

alone, while the second term contains all of the residual y-dependence.
Now it is clear that if both

|So| �
∣∣∣∣ 1

δ+

d ln g

d ln δ+

∣∣∣∣ =
∣∣∣ γ
δ+

∣∣∣ (A 12)

and

|Si| �
∣∣∣∣ 1

δ+

d ln g

d ln δ+

∣∣∣∣ =
∣∣∣ γ
δ+

∣∣∣ (A 13)

then the first term on the right-hand side of equation (A 9) dominates. If γ → constant
as δ+ → ∞, the inequalities are satisfied. Note that a much weaker condition can be
applied which yields the same result, namely that both inner and outer scaled profiles
have the same dependence on δ+, i.e. Si = So in the overlap range.

Since these inequalities are satisfied over some range in y, then to leading order,
equation (A 9) can be written as

ȳ

f
(1)
o

∂f(1)
o

∂ȳ

∣∣∣∣
δ+

= γ(δ+). (A 14)

The solution to equation (A 14) can be denoted as f(1)
o since it represents a first-order

approximations to fo. It is not, however, simply the same as fo∞ because of the δ+

dependence of γ, but reduces to it in the limit. Thus, by regrouping into the leading
term all of the y-independent contributions, the method applied here has yielded a
more general result than the customary expansion about infinite Reynolds number.
It is also easy to see why the usual matching of infinite Reynolds number inner and
outer solutions will not work if the limiting value of γ is zero.

From equation (8.3), it also follows that

y+

f
(1)
i

∂f
(1)
i

∂y+

∣∣∣∣∣
δ+

= γ(δ+). (A 15)

An interesting feature of these first-order solutions is that the inequalities given by
equations (A 12) and (A 13) determine the limits of validity of both equations (A 14)



Similarity theory for the turbulent plane wall jet 407

and (A 15) since either So or Si will be large outside the overlap region. Clearly the
extent of this region will increase as the Reynolds number (or δ+) increases.

Both equations (A 14) and (A 15) must be independent of the origin for y, i.e.
invariant to transformations of the form y → y + a. Therefore, the most general
solutions are of the form

f(1)
o (ȳ, δ+) = Co(ȳ + ā)γ, (A 16)

f
(1)
i (y+, δ+) = Ci(y

+ + a+)
γ
, (A 17)

where the parameters Co, Ci and γ are functions of δ+ and must be determined
along with the constant a. In the remainder of this paper, the superscript (1) will
be dropped; however it is these first-order solutions that are being referred to unless
otherwise stated.

The relation between u∗ and Um follows immediately from equation (8.1), i.e.

g(δ+) =
Co(δ

+)

Ci(δ+)
δ+−γ(δ+)

. (A 18)

However, equation (A 11) must also be satisfied. Substituting equation (A 18) into
(A 11) implies that γ, Co, and Ci are constrained by

ln δ+ dγ

dδ+
=

d

dδ+
ln

[
Co

Ci

]
(A 19)

or equivalently,

ln δ+ dγ

d ln δ+
=

d

d ln δ+
ln

[
Co

Ci

]
. (A 20)

Equation (A 19) is exactly the criterion for the neglected terms in (A 9) to vanish
identically (i.e. Si − So ≡ 0). Therefore the solution represented by equations (A 16)–
(A 19) is, indeed, the first-order solution for the velocity profile in the overlap layer at
finite, but large, Reynolds number. Clearly when y+ is too big or ȳ is too small for a
given value of δ+, the inequalities of equations (A 12) and (A 13) cannot be satisfied.
Since all the derivatives with respect to δ+ must vanish as δ+ → ∞ (the AIP), the
inner range of the outer overlap solution is unbounded in the limit, as is the outer
range of the inner.

Since equation (A 20) must be satisfied regardless of the precise choice of δ+,
solutions to it must be invariant to transformations of the type δ+ → Dδ+ where D is
a scale factor. Also, equations (A 16) and (A 17) must be asymptotically independent
of Reynolds number, since fi and fo are. Therefore the coefficients and exponent
must be asymptotically constant, i.e.

γ(δ+)→ γ∞,

Co(δ
+)→ Co∞,

Ci(δ
+)→ Ci∞,

as δ+ → ∞. Also, as noted in § 8, γ∞, Co∞ and Co∞ cannot be zero. These conditions
are powerful constraints; and together with equation (A 19) rule out some functional
forms for γ (like that suggested by Barenblatt (1993), for example). Therefore it is
important to note that they are a direct consequence of the AIP and the assumption
that scaling laws should correspond to similarity solutions of the equations of motion.
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Appendix B. The Reynolds stress in the overlap layer
By following the same procedure as for the velocity (see Appendix A), the outer

and inner Reynolds stress profile functions for the overlap region can be obtained
(just as for the boundary layer by GC). Here, the Reynolds shear stress is given by

ro(ȳ; δ+) = Do(δ
+)ȳβ(δ+), (B 1)

ri(y
+; δ+) = Di(δ

+)y+β(δ+)
, (B 2)

where a solution is possible only if

Rso

Rsi
=
Di

Do
δ+β (B 3)

and

ln δ+ dβ

dδ+
=

d

dδ+
ln

[
Do

Di

]
. (B 4)

Unlike the velocity, however, more information about the Reynolds stress is avail-
able from the averaged momentum equation for the overlap layer since both equa-
tions (2.4) and (2.5) reduce to

∂

∂y
〈−uv〉 = 0 (B 5)

in the limit of infinite Reynolds number. Thus,

βRsoDoȳ
β−1 → 0 (B 6)

and

βRsiDiy
+β−1 → 0. (B 7)

Since both Do and Di must remain finite and be asymptotically constant (if the
Reynolds stress itself is non-zero), these conditions can be met only if

β → 0. (B 8)

From equation (B 5) for large values of y+, the Reynolds stress in inner variables
in the matched layer is given to first order (exact in the limit) by

ri → 1. (B 9)

Since Rsi = u2∗, this can be consistent with equation (B 2) only if Di → 1 as δ+ → ∞.
It follows immediately that

Rso → Di

Do
u2
∗ (B 10)

in the infinite Reynolds number limit, just as suggested in § 5.

Appendix C. The effect of Reynolds number on the overlap range
This Appendix also parallels very closely GC, but is included here since it is also

important to understanding the wall jet. The overlap layer can be related directly to
the averaged equations for the mean flow and the Reynolds stresses. The latter will
be seen to be of particular interest since it is through them that the local Reynolds
number influences the approach to the asymptotic state. Of particular interest is the
question of how large the Reynolds number must be before the wall jet begins to
show the characteristics of the asymptotic state.
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The averaged momentum equation from about y+ > 30 out to ȳ < 0.1 is given
approximately by

0 =
∂

∂y
〈−uv〉. (C 1)

It has no obvious Reynolds number dependence; and the stress is effectively constant
throughout this region. This is, however, not the entire story because of the Reynolds
transport equations. For this ‘constant shear stress region’ the viscous diffusion and
mean convection terms are negligible (as in the mean momentum equation), so the
equations reduce approximately to (Tennekes & Lumley 1972)

0 = −
(〈

p
∂ui

∂xk

〉
+

〈
p
∂uk

∂xi

〉)
−
[
〈uiu2〉∂Uk

∂x2

+ 〈uku2〉∂Ui

∂x2

]
− ∂〈uiuku2〉

∂x2

−2εik, (C 2)

where Ui = Uδi1. Thus the viscosity does not appear directly in any of the single-
point equations governing this region, nor does it appear in those governing the outer
boundary layer.

In spite of the above, viscosity continues to play a crucial role in at least a
portion of the constant stress layer, even at infinite Reynolds number. The reason for
this is that the scales at which the dissipation, εik , takes place depend on the local
turbulence Reynolds number, Rt = u′L/ν. For Rt > 104 approximately, the energy
dissipation is completely controlled by the large energetic scales of motion. These
are effectively inviscid, but transfer energy through nonlinear interactions (the energy
cascade) to the much smaller viscous scales where the actual dissipation occurs (see
Tennekes & Lumley 1972). When this is the case, the dissipation is nearly isotropic
so εik ≈ εδik . Moreover, ε can be approximated by the infinite Reynolds number
relation: ε ∼ q3/L, where L is a scale characteristic of the energy-containing eddies.
Thus the entire Reynolds stress equations are effectively inviscid. Note that in this
limit the Reynolds shear stress has no dissipation at all, i.e. ε12 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-
containing scales nearly overlap, and so the latter (which also produce the Reynolds
shear stress) feel directly the influence of viscosity. In this limit, the energy and
dissipative ranges nearly overlap, and the dissipation is more reasonably estimated
by ε ∼ νq2/L2, where the constant of proportionality is of order 10. The dissipation
tensor, εik , is anisotropic and ε12, in particular, is non-zero (Hanjalic & Launder 1974).

For turbulence Reynolds numbers between these two limits, the dissipation will
show characteristics of both limits, gradually making a transition from ε ∼ νq2/L2

to ε ∼ q3/L as Rt increases. Thus the Reynolds stresses themselves will feel this
directly, and will show a strong Reynolds number dependence. Obviously, in order to
establish when (if at all) parts of the flow become Reynolds number independent, it is
necessary to determine how the local turbulence Reynolds number varies downstream
and across the flow.

Over the outer boundary layer (which is most of it) and excluding the overlap
region, L ≈ 0.65y1/2 and u′ ≈ 0.2Um. So when Umy1/2/ν > 7000, the dissipation
in the outer flow is effectively inviscid. The data of KEP vary from 14 × 103 at
x/b = 20 to 31× 103 at x/b = 150. Hence the mean and turbulence quantities in the
outer flow should show little Reynolds number dependence, and this is indeed the
case – when they are scaled properly! They can, of course, not be entirely Reynolds
number independent because of the boundary conditions imposed by the inner flow
on the outer. This residual dependence manifests itself in the overlap layer in the slow
variations of Ci and γ, for example.
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The near-wall region is considerably more interesting, however, since in it the scales
governing the energy-containing eddies are constrained by the proximity of the wall.
Hence, the turbulence Reynolds number, Rt, depends on the distance from the wall,
y. In fact, Rt ∼ y+ with a coefficient of about 18, so in effect y+ is the turbulence
Reynolds number. Because of this, two things are immediately obvious.

First, since the physical distance from the wall for a fixed value of y+ does not
increase with downstream distance as rapidly as the jet spreads, then more and more
of the wall jet will become effectively inviscid and will be governed by the inviscid
dissipation relation. And correspondingly, the mean and turbulence quantities in the
overlap layer will become Reynolds number independent, albeit very slowly. This
is exactly the physical reason why Co, Ci, and γ become asymptotically constant
as described above. And clearly these limiting values cannot be reached until the
entire ‘inertial’ layer is governed by the infinite Reynolds number dissipation relation.
Obviously this can happen only when there is a substantial range satisfying y+ > 300
and for which the mean convection terms are negligible. Thus the asymptotic limits
are realized only when 300ν/u∗ � 0.1y1/2 or u∗y1/2/ν � 3000, which corresponds
approximately to Umy1/2/ν � 50 000. This is well above the range of the data
considered here, or available elsewhere. Therefore the overlap layer, to the extent that
it is identifiable at all, should (and does) display a Reynolds number dependence, not
only in Co, Ci, and γ, but correspondingly in the behaviour of 〈u2〉, 〈uv〉, etc. This is
directly analogous to the observations in the zero-pressure-gradient boundary layer
(cf. Gad-el-Hak & Bandyopadhyay 1994; GC).

Second, there will always be a mesolayer (a term appropriated from Long & Chen
(1981) who argued for its existence, but from entirely different physical and scaling
arguments which we find untenable) a region below about y+ ≈ 300 in which the
dissipation can never assume the character of a high Reynolds number flow. Hence,
the dissipation can never become independent of viscosity, no matter how high the
Reynolds number becomes – and even though the mean momentum equation itself
is inviscid above y+ ≈ 30! This is well-known to turbulence modellers, but the
consequences for similarity theory and asymptotic analyses do not seem to have been
noticed previously. It is particularly important for experimentalists who have routinely
(and wrongly) tried to apply asymptotic formulas to data from to this region.

Thus the constant stress layer is really four separate regions, each having its own
unique character: the ‘inertial’ layer (y+ > 300, ȳ < 0.1) obtained in the preceding
section which can ultimately become inviscid; an ‘in-between layer’ (30 < y+ < 300),
in which the viscous stresses are negligible, but in which viscosity acts directly on the
turbulence scales producing the Reynolds stresses; a buffer layer (3 < y+ < 30 approx-
imately) where the Reynolds stress and viscous stress both control the mean flow; and
the linear sublayer near the wall (y+ < 3 approximately) where the viscous stresses
dominate. It seems appropriate to call this ‘in-between layer’ the mesolayer since it is
clearly not the buffer layer, nor is it the overlap region. And unlike the ‘mesolayer’
proposed by Long & Chen (1981), it needs no new length scale to describe it since its
characteristics and extent are measured entirely by y+. Interestingly, the application of
near-asymptotics to the overlap region appears to capture the functional dependence
of both the inertial and mesolayer regions with the offset parameter a as noted in § 11.
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